Prof Graham Taylor
Professor of Mathematical Biology
Peter Brunet Fellow in Biological Sciences, Jesus College
+44 (0)1865 271219
Research interests: 

My research deals with the dynamics and control of flight in birds and insects, but reflects a broader interest in the dynamics of biological systems in general. With the publication of my recent monograph Evolutionary Biomechanics: Selection, Phylogeny, and Constraint, I have begun publishing on evolutionary theory, taking biomechanics as a lens through which to view the evolutionary process. I am Professor of Mathematical Biology in the Department of Zoology, and am the Peter Brunet Fellow and Tutor in Biological Sciences at Jesus College. I previously held an RCUK Academic Felowship (2006-2011), a Royal Society University Research Fellowship (2004-2009), a Royal Commission for the Exhibition of 1851 Research Fellowship (2002–2004), and the Weir Junior Research Fellowship (2002–2005) at University College, Oxford. My research team is funded principally by a €2M ERC Starting Grant on the Dynamics and Control of Bird and Insect Flight, as well as by grants from Dstl and EOARD, and through studentships from the EPSRC and BBSRC.

Publication list

Walker, S. M., Thomas A. L. R., & Taylor G. K. (2009).  Photogrammetric reconstruction of high-resolution surface topographies and deformable wing kinematics of tethered locusts and free-flying hoverflies. J. Roy. Soc. Interface 6, 351-366.
Taylor, G. K. (2008).  Flight control of insects. (Shimozawa, T., Ed.).Insect Mimetics 3, 678-684.
Taylor, G. K., Bacic M., Bomphrey R. J., Carruthers A. C., Gillies J., Walker S. M., & Thomas A. L. R. (2008).  New experimental approaches to the biology of flight control systems. J. Exp. Biol. 211, 258-66.
Taylor, G. K., & Krapp H. G. (2007).  Sensory systems and flight stability: What do insects measure and why?. Adv. Insect Physiol. 34, 231-316.
Taylor, G. K. (2007).  Modelling the effects of unsteady flow phenomena on flapping flight dynamics— stability & control. (Liebe, R., Ed.).Flow Phenomena in Nature: a Challenge to Engineering Design 1, 155-166.
Carruthers, A. C., Thomas A. L. R., & Taylor G. K. (2007).  Automatic aeroelastic devices in the wings of a steppe eagle Aquila nipalensis. J. Exp. Biol. 210, 4136-4149.
Bomphrey, R. J., Lawson N. J., Taylor G. K., & Thomas A. L. R. (2006).  Application of digital particle image velocimetry to insect aerodynamics: measurement of the leading-edge vortex and near wake of a hawkmoth. Exp. Fluids 40, 546-554.
Bomphrey, R. J., Taylor G. K., Lawson N. J., & Thomas A. L. R. (2006).  Digital particle image velocimetry measurements of the downwash distribution of a desert locust Schistocerca gregaria. J. Roy. Soc. Interface 3, 311-7.
Taylor, G. K. (2005).  Flight muscles and flight dynamics: towards an integrative framework. Anim. Biol. 55, 81-99.
Taylor, G. K., & Zbikowski R. (2005).  Nonlinear time-periodic models of the longitudinal flight dynamics of desert locusts Schistocerca gregaria. J. Roy. Soc. Interface 2, 197-221.
Bomphrey, R. J., Lawson N. J., Harding N. J., Taylor G. K., & Thomas A. L. R. (2005).  The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. J. Exp. Biol. 208, 1079-94.
Thomas, A. L. R., Taylor G. K., Srygley R. B., Nudds R. L., & Bomphrey R. J. (2004).  Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Exp. Biol. 207, 4299-4323.