Dr Simon Walker
Royal Society University Research Fellow
Stipendiary Lecturer, St John's College
Email: 
simon.walker@zoo.ox.ac.uk
Telephone: 
+44 (0) 1865 271223
Research interests: 

My research interests lie in establishing new techniques for measuring micro-scale, high-speed movements to open windows upon previously hidden biomechanical phenomena. My current work uses insect flight as a model for understanding complex biomechanical systems. The design of the insect thorax allows tiny vibrations from resonating power muscles to be amplified through the intricate wing hinge into reciprocal motion of the wings. Control is then provided by the vast array of tiny steering muscles, which subtly alter the wing motion and afford insects their incredible manoeuvrability.

My work aims to understand how natural selection has shaped the flight motor in insects, which differs so markedly from those of manmade design, by measuring and modelling their wing kinematics along with the mechanics of the flight muscles in the thorax. This work will therefore influence the design of unmanned-air vehicles and also have applications in smart structures, biomaterials and micro-actuators.

Publication list

Page, J.W., & Walker S.M. (2016).  Reassessing the Gear Change Mechanism in Dipteran Flight. Society for Integrative and Comparative Biology
Hofhuis, H., Moulton D., Lessinnes T., Routier-Kierzkowska A-L., Bomphrey R.J., Mosca G., Reinhardt H., Sarchet P., Gan X., Tsiantis M., et al. (2016).  Morphomechanical Innovation Drives Explosive Seed Dispersal. Cell 166, 1-12.
Page, J.W., & Walker S.M. (2015).  The Gear Change Mechanism of Dipteran Flight. Society for Experimental Biology
Walker, S.M., Schwyn D.A., Mokso R., Wicklein M., Müller T., Doube M., Stampanoni M., Krapp H.G., & Taylor G.K. (2014).  In vivo time-resolved microtomography reveals the mechanics of the blowfly flight motor. PLoS Biol. 12(3), e1001823.
Taylor, G. K., Carruthers A. C., Hubel T. J., & Walker S. M. (2012).  Wing morphing in insects, birds and bats: mechanism and function. (Valasek, J., Ed.).Morphing Aerospace Vehicles and Structures 11-40.
Walker, S. M., Thomas A. L. R., & Taylor G. K. (2012).  Operation of the alula as an indicator of gear change in hoverflies. J. Roy. Soc. Interface 9, 1194-1207.
Carruthers, A. C., Thomas A. L. R., Walker S. M., & Taylor G. K. (2010).  Mechanics and aerodynamics of perching manoeuvres in a large bird of prey. Aero. J. 114, 673-680.
Walker, S. M., Thomas A. L. R., & Taylor G. K. (2010).  Deformable wing kinematics in free-flying hoverflies. J. Roy. Soc. Interface 7, 131-142.
Carruthers, A. C., Walker S. M., Thomas A. L. R., & Taylor G. K. (2010).  Aerodynamics of aerofoil sections measured on a free-flying bird. Proc. Inst. Mech. Eng. G J. Aero. Eng. 224, 855-864.
Bomphrey, R. J., Walker S. M., & Taylor G. K. (2009).  The typical flight performance of blowflies: Measuring the normal performance envelope of Calliphora vicina using a novel corner-cube arena. Plos One 4(11), e7852.
Walker, S. M., Thomas A. L. R., & Taylor G. K. (2009).  Deformable wing kinematics in the desert locust: how and why do camber, twist and topography vary through the stroke?. J. Roy. Soc. Interface 6, 735-747.
Young, J., Walker S. M., Bomphrey R. J., Taylor G. K., & Thomas A. L. R. (2009).  Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 325, 1549-1552.

Pages